Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ limits0π / 2 (d x/4+5 sin x)=
Q.
0
∫
π
/2
4
+
5
s
i
n
x
d
x
=
2020
181
TS EAMCET 2020
Report Error
A
2
1
lo
g
3
B
3
1
lo
g
2
C
2
lo
g
3
D
2
1
lo
g
2
3
Solution:
We have,
0
∫
π
/2
4
+
5
s
i
n
x
d
x
=
0
∫
π
/2
4
+
5
(
1
+
t
a
n
2
2
x
2
t
a
n
2
x
)
d
x
=
0
∫
π
2
4
+
4
t
a
n
2
2
x
+
10
t
a
n
2
x
(
1
+
t
a
n
2
2
x
)
d
x
=
4
1
0
∫
π
2
t
a
n
2
2
x
+
2
5
t
a
n
2
x
+
1
s
e
c
2
2
x
d
x
let
tan
2
x
=
t
⇒
sec
2
2
x
(
2
1
)
d
x
=
d
t
⇒
sec
2
2
x
d
x
=
2
d
t
at
x
=
0
,
t
=
0
and
x
=
2
π
,
t
=
1
=
4
2
0
∫
1
−
t
2
+
2
5
t
+
1
1
d
t
=
2
1
0
∫
1
t
2
+
2
5
t
+
1
+
16
25
−
16
25
d
t
=
2
1
0
∫
1
(
t
+
4
5
)
2
−
16
9
d
t
=
2
1
0
∫
1
(
t
+
4
5
)
2
−
(
4
3
)
2
d
t
=
3
1
[
lo
g
∣
∣
t
+
2
t
+
2
1
∣
∣
]
0
1
=
3
1
[
lo
g
(
3
3/2
)
−
lo
g
(
2
1/2
)
]
=
3
1
[
lo
g
(
2
1
)
−
lo
g
(
4
1
)
]
=
3
1
[
lo
g
(
1
2
1
4
)
]
=
3
1
lo
g
2