Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ (ex2(2x+x3)/(3+x2)2) dx is equal to :
Q.
∫
(
3
+
x
2
)
2
e
x
2
(
2
x
+
x
3
)
d
x
is equal to :
5201
225
BITSAT
BITSAT 2018
Report Error
A
(
3
+
x
2
)
e
x
2
+
k
11%
B
2
1
(
3
+
x
2
)
2
e
x
2
+
k
44%
C
4
1
(
3
+
x
2
)
2
e
x
2
+
k
22%
D
2
1
(
3
+
x
2
)
e
x
2
+
k
22%
Solution:
Put
x
2
=
t
⇒
2
x
d
x
=
d
t
I
=
∫
(
3
+
x
2
)
2
e
x
2
(
2
+
x
2
)
x
d
x
=
2
1
∫
e
t
(
3
+
t
)
2
(
2
+
t
)
d
t
=
2
1
∫
(
3
+
t
)
2
e
t
(
3
+
t
−
1
)
d
t
=
2
1
∫
e
t
[
3
+
t
1
−
(
3
+
t
)
2
1
]
d
t
=
2
1
e
t
3
+
t
1
+
k
[
∵
d
t
d
(
3
+
t
1
)
=
(
3
+
t
)
2
−
1
]
=
2
1
3
+
x
2
e
x
2
+
k