Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫√ex-1 dx is equal to
Q.
∫
e
x
−
1
​
d
x
is equal to
1771
221
KEAM
KEAM 2005
Report Error
A
2
[
e
x
−
1
​
−
tan
−
1
e
x
−
1
​
]
+
c
B
e
x
−
1
​
−
tan
−
1
e
x
−
1
​
+
c
C
e
x
−
1
​
+
tan
−
1
e
x
−
1
​
+
c
D
2
[
e
x
−
1
​
+
tan
−
1
e
x
−
1
​
]
+
c
E
2
[
e
x
−
1
​
−
tan
−
1
e
x
+
1
​
]
+
c
Solution:
Let
I
=
∫
e
x
−
1
​
d
x
=
∫
1
+
(
e
x
−
1
​
)
2
e
x
−
1
​
e
x
​
d
x
Put
e
x
−
1
​
=
t
⇒
e
x
−
1
=
t
2
⇒
e
x
d
x
=
2
t
d
t
∴
I
=
2
∫
1
+
t
2
t
2
d
t
​
=
2
∫
(
1
+
t
2
1
+
t
2
​
)
d
t
−
2
∫
1
+
t
2
1
​
d
t
=
2
[
t
−
tan
−
1
t
]
+
c
=
2
[
e
x
−
1
​
−
tan
−
1
e
x
−
1
​
]
+
c