Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫e sin θ [ log sin θ + cos ec2θ ] cos θ dθ is equal to
Q.
∫
e
s
i
n
θ
[
lo
g
sin
θ
+
cos
e
c
2
θ
]
cos
θ
d
θ
is equal to
2298
203
KEAM
KEAM 2008
Integrals
Report Error
A
∫
e
s
i
n
θ
[
lo
g
sin
θ
+
cos
e
c
2
θ
]
+
c
B
e
s
i
n
θ
[
lo
g
sin
θ
+
cos
ec
θ
]
+
c
C
e
s
i
n
θ
[
lo
g
sin
θ
−
cos
ec
θ
]
+
c
D
e
s
i
n
θ
[
lo
g
sin
θ
−
cos
e
c
2
θ
]
+
c
E
e
s
i
n
θ
[
lo
g
sin
θ
+
cos
2
θ
]
+
c
Solution:
Let
I
=
∫
e
s
i
n
θ
lo
g
sin
θ
cos
θ
d
θ
+
∫
e
s
i
n
θ
cos
e
c
2
θ
cos
θ
d
θ
Put
sin
θ
=
t
⇒
cos
θ
d
θ
=
d
t
∴
I
=
∫
e
t
lo
g
t
d
t
+
∫
t
e
t
d
t
+
−
1
e
t
t
−
1
−
∫
−
1
e
t
t
−
1
d
t
=
e
t
(
lo
g
t
−
t
1
)
+
c
=
e
s
i
n
θ
(
lo
g
sin
θ
−
cos
ec
θ
)
+
c