Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ ( cos 2 x- cos 2 θ/ cos x- cos θ) d x is equal to
Q.
∫
c
o
s
x
−
c
o
s
θ
c
o
s
2
x
−
c
o
s
2
θ
d
x
is equal to
13
163
Integrals
Report Error
A
2
(
sin
x
+
x
cos
θ
)
+
C
B
2
(
sin
x
−
x
cos
θ
)
+
C
C
2
(
sin
x
+
2
x
cos
θ
)
+
C
D
2
(
sin
x
−
2
x
cos
θ
)
+
C
Solution:
∫
c
o
s
x
−
c
o
s
θ
c
o
s
2
x
−
c
o
s
2
θ
d
θ
=
∫
c
o
s
x
−
c
o
s
θ
2
c
o
s
2
x
−
1
−
(
2
c
o
s
2
θ
−
1
)
d
θ
=
2
∫
c
o
s
x
−
c
o
s
θ
c
o
s
2
x
−
c
o
s
2
θ
d
θ
=
2
∫
(
cos
x
+
cos
θ
)
d
θ
=
2
sin
x
+
2
x
cos
θ
+
C