Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫(1/8 sin2 x+1) dx is equal to
Q.
∫
8
s
i
n
2
x
+
1
1
dx is equal to
1904
212
KEAM
KEAM 2016
Integrals
Report Error
A
sin
−
1
(
tan
x
)
+
C
17%
B
3
1
sin
−
1
(
tan
x
)
+
C
9%
C
3
1
tan
−
1
(
3
tan
x
)
+
C
39%
D
tan
−
1
(
3
t
an
x
)
+
C
22%
E
sin
−
1
(
3
tan
x
)
+
C
22%
Solution:
Le
I
=
∫
8
s
i
n
2
x
+
1
1
=
∫
8
t
a
n
2
x
+
s
e
c
2
x
s
e
c
2
x
d
x
[dividing numerator and denominator by
cos
2
x
]
=
∫
1
+
(
3
t
a
n
x
)
2
s
e
c
2
x
d
x
Let
t
=
3
tan
x
⇒
d
x
d
t
=
3
sec
2
x
⇒
3
d
t
=
sec
2
x
d
x
∴
I
=
3
1
∫
1
+
(
t
)
2
d
t
=
3
1
tan
−
1
(
t
)
+
C
=
3
1
tan
−
1
(
3
tan
x
)
+
C