Let I=∫0π/2cos4x+sin4xxsinxcosxdx .. (i) ⇒I=∫0π/2sin4x+cos4x(2π−x)sinxcosxdx ... (ii)
On adding Eqs. (i) and (ii), we get 2I=2π∫0π/2cos4x+sin4xsinxcosxdx ⇒I=4π∫0π/21+tan4xtanxsec2x
(dividing Nr and Dr by cos4x)
Put, tan2x=t⇒2tanxsec2xdx=dt ∴I=4π∫0∞2(1+t2)1dt=8π[tan−1t]0∞ =8π×2π=16π2