∠C=2π ⇒a2+b2=c2
Clearly, ∣x∣≤1, also c2a2x2+c2b2x2=x2≤1 sin−1x=sin−1(cax)+sin−1(cbx) ⇒sin−1x=sin−1(cax1−c2b2x2+cbx1−c2a2x2) ⇒x=c2axc2−b2x2+c2bxc2−a2x2 ⇒x=0 or c2=ac2−b2x2+bc2−a2x2 ⇒c4=a2(c2−b2x2)+b2(c2−a2x2) +2ab(c2−b2x2)(c2−a2x2) ⇒c4=(a2+b2)c2−2a2b2x2+2ab(c2−b2x2)(c2−a2x2) ⇒abx2=c4−c2(a2+b2)x2+a2b2x4 ⇒a2b2x4=c4−c4x2+a2b2x4 ⇒x2=1 ⇒x=1,−1
Total number of different values of x are three namely x=0,1,−1