Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
In the quadratic equation x2+(p+i q) x+3 i=0, p q are real. If the sum of the squares of the roots is 8 then :
Q. In the quadratic equation
x
2
+
(
p
+
i
q
)
x
+
3
i
=
0
,
p
&
q
are real. If the sum of the squares of the roots is 8 then :
891
169
Complex Numbers and Quadratic Equations
Report Error
A
p
=
3
,
q
=
−
1
B
p
=
−
3
,
q
=
−
1
C
p
=
3
,
q
=
1
or
p
=
−
3
,
q
=
−
1
D
p
=
−
3
,
q
=
1
Solution:
x
2
+
(
p
+
i
q
)
x
+
3
i
=
0
α
+
β
=
−
(
p
+
i
q
)
,
α
β
=
3
i
α
2
+
β
2
=
(
α
+
β
)
2
−
2
α
β
=
[
−
(
p
+
i
q
)
]
2
−
6
i
=
(
p
2
−
q
2
)
+
i
(
2
pq
−
6
)
=
8
⇒
p
2
−
q
2
=
8
and
pq
=
3
⇒
p
=
3
,
q
=
1
or
p
=
−
3
,
q
=
−
1