Since ∣∣sinxcosxcosxcosxsinxcosxcosxcosxsinx∣∣=0 ⇒sinx(sin2x−cos2x)−cosx(cosxsinx−cos2x)+cosx(cos2x−sinxcosx)=0 ⇒sinx(sin2x−cos2x)−2cos2x(sinx−cosx)=0 ⇒(sinx−cosx)[sinx(sinx+cosx)−2cos2x]=0 ⇒(sinx−cosx)[(sin2x−cos2x)+(sinxcosx−cos2x)]=0 ⇒(sinx−cosx)2[sinx+cosx+cosx]=0 ⇒(sinx−cosx)2(sinx+2cosx)=0 ⇒Either (sinx−cosx)2=0
or (sinx+2cosx)=0 ⇒ Either tanx=1 or tanx=−2 ⇒ Either x=4π or tanx=−2
As x∈[−4π,4π],tanx∈[−1,1]
Hence, real solution is only x=4π