Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
In the expansion of (1 + x)n, (C1/C0)+2(C2/C1)+3(C3/C2)+ ldots +n (Cn/Cn-1) is equal to
Q. In the expansion of
(
1
+
x
)
n
,
C
0
C
1
+
2
C
1
C
2
+
3
C
2
C
3
+
…
+
n
C
n
−
1
C
n
is equal to
2588
205
Binomial Theorem
Report Error
A
2
(
n
+
1
)
40%
B
2
n
0%
C
2
n
(
n
+
1
)
60%
D
3
n
(
n
+
1
)
0%
Solution:
Since, we know-that
n
C
r
−
1
n
C
r
=
r
n
−
r
+
1
∴
C
0
C
1
=
n
,
C
1
C
2
=
2
n
−
1
,
C
2
C
3
=
3
n
−
2
,
…
Thus,
C
0
C
1
+
2
C
1
C
2
+
3
C
2
C
3
+
…
+
n
C
n
−
1
C
n
=
n
+
2
⋅
1
n
−
1
+
3
⋅
3
n
−
2
+
…
+
n
⋅
n
1
=
[
n
+
(
n
−
1
)
+
(
n
−
2
)
+
...
+
1
]
=
2
n
(
n
+
1
)