Q.
In ΔABC,L,M,N are points on BC,CA,AB
respectively, dividing them in the ratio 1:2, 2:3,3:5. If the point K divides AB in the ratio 5:3, then ∣CK∣∣AL+BM+CN∣=
We have
In ΔABC,L,M,N are points on BC,CA and AB respectively, dividing in the ratio 1:2,2:3 and 3:5
Now, L=32b+c,M=52a+3c N=83b+5a,K=85b+3a AL=32b+c−a=32b+c−3a BM=52a+3c−b=52a+3c−5b CN=83b+5a−c=83b+5a−8c CK=85b+3a−c=85b+3a−8c ∵∣∣CKAL+BM+CN∣∣= ∣∣85b+3a−8c32b+c−3a+52a+3c−5b+83b+5a−8c∣∣ =∣∣15(5b+3a−8c)(5b+3a−8c)∣∣=151