Given, in △ABC, acosA=bcosB=ccosC...(i)
From sine rule, asinA=bsinB=csinC...(ii)
On dividing Eq. (ii) by Eq. (i), we get ⇒tanA=tanB=tanC ⇒A=B=C
So, △ABC is an equilateral triangle ⎝⎛∵ in ΔABC,A+B+C=180∘⇒A+A+A=180∘⇒A=60∘=B=C⎠⎞
Area of equilateral △ABC =43a2=43(2)2(∵a=2, given ) =43×4=3