Given that, sin3A+sin3B+sin3Ca3+b3+c3=8 ...(i)
Using sine rule for a triangle ABC sinAa=sinBb=sinCc=2R {where 2R→ circumradius } ∴a=2RsinA,b=2RsinB,c=2RsinC
Substituting the values of a,b,c in Eq . (i), we get {(2RsinA)3+(2RsinB)3+(2RsinC)3{sin3A+sin3B+sin3C}=8
or sin3A+sin3B+sin3C(2R)3(sin3A+sin3B+sin3C)=8
or (2R)3=8 or 2R=2