cotB+cotC−cotA=sinBcosB+sinCcosC−cotA =sinBsinCsinCcosB+cosCsinB−cotA =sinBsinCsin(B+C)−sinAcosA =sinAsinBsinCsin2A−sinBsinCcosA
Since asinA=bsinB=csinC=k (say)
and cosA=2bcb2+c2−a2, we have cotB+cotC−cotA=(abc)ka2−bc2bc(b2+c2−a2) =abck(a2−a2)=0,{ As 2b2+c2−a2=23a2−a2=22a2=a2}