We have, A=tan−12⇒tanA=2
and B=tan−13⇒tanB=3
since A,B,C are angles of a triangle, A+B+C=π ⇒C=π−(A+B)
Now, A+B=tan−12+tan−13=π+tan−1[1−2.32+3] [∴tan−1x+tan−1y=π+tan−1[1−xyx+y]<br/>forx>0,y>0andxy>1] =π+tan−1(−1)=π−tan−11=π−4π=43π ∴From(1),C=π−43π=4π