z1/3=+iq⇒(x−iy)1/3=(p+iq)(∵z=x−iy)⇒(x−iy)=p(p+iq)3⇒(x−iy)=p3+(iq)3+3p2qi+3pq2i2⇒(x−iy)=p3−iq3+3p2qi−3pq2⇒(x−iy)=(p3−3pq2)+i(3p2q−q3) On comparing both sides, we get x=(p3−3pq2) and −y=3p2q−q3⇒x=p(p2−3q2) and y=q(q2−3p2)⇒px=(p2−3q2) and qy=(q2−3p2) Now, px+py=p2−3q2+q2−3p2⇒px+qy=−2p2−2q2⇒px+qy=−2(p2+q2)⇒(p2+q2)x/p+y/q=−2