Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If zr = cos (rα/n2)+i sin (rα /n2), where r = 1, 2, 3, ...., n, then displaystyle limn→∞ z1z2z3 ... zn is equal to
Q. If
z
r
=
cos
n
2
r
α
+
i
s
in
n
2
r
α
, where
r
=
1
,
2
,
3
,
....
,
n
, then
n
→
∞
lim
z
1
z
2
z
3
...
z
n
is equal to
2605
229
Limits and Derivatives
Report Error
A
cos
α
+
i
s
in
α
27%
B
cos
(
α
/2
)
−
i
s
in
(
α
/2
)
40%
C
e
i
α
/2
27%
D
3
e
i
α
7%
Solution:
z
r
=
cos
n
2
r
α
+
i
s
in
n
2
r
α
z
1
=
cos
n
2
α
+
i
s
in
n
2
α
;
z
2
=
cos
n
2
2
α
+
i
s
in
n
2
2
α
;
...
⇒
z
n
=
cos
n
2
n
α
+
i
s
in
n
2
n
α
consider
n
→
∞
lim
(
z
1
z
2
z
3
....
z
n
)
=
n
→
∞
lim
[
cos
{
n
2
α
(
1
+
2
+
3
+
....
+
n
)
}
+
i
s
in
{
n
2
α
(
1
+
2
+
3
+
....
+
n
)
}
]
=
n
→
∞
lim
[
cos
2
n
2
α
n
(
n
+
1
)
+
i
s
in
2
n
2
α
n
(
n
+
1
)
]
=
n
→
∞
lim
2
cos
α
(
1
+
n
1
)
+
2
i
s
in
α
(
1
+
n
1
)
=
cos
2
α
+
i
s
in
2
α
=
e
2
i
α