Q.
If z is a uni-modular complex number such that Re(z−1)+Re(z2)=0∫π/2sinx⋅ln∣sinx−cosx∣dx
then
85
113
Complex Numbers and Quadratic Equations
Report Error
Solution:
I=0∫π/2sinx⋅ln∣sinx−cosx∣dx I=0∫π/2cosx⋅ln∣sinx−cosx∣dx ∴2I=0∫π/2(sinx+cosx)ln∣sinx−cosx∣dx =0∫π/4(sinx+cosx)ln(cosx−sinx)dx+π/4∫π/2(sinx+cosx)ln(sinx−cosx)dx =[(s−c)ln(c−s)]0π/4−0∫π/4c−ss−c(−s−c)dx+[(s−c)ln(s−c)]π/4π/2−π/4∫π/2(s−c)⋅(s−c)1(c+s)dx =−2 ∴I=−1 ∴Re(z−1)+Rez2=−1 Let z=eiθ ∴cos2θ+cosθ=0⇒cosθ=−1,cosθ=21 when cosθ=−1⇒z=−1 when cosθ=21⇒z=21+2i3