Let z=r(cosθ+isinθ) ∴(Imz)5Im(z5)=(Im(re1θ))5Im(reiθ)5 =(rsinθ)5Im(r5esiθ)=r5sin5θr5sin5θ=(sin5θ)sin5θ...(1) ∵cos5θ+isin5θ=(e′θ)5=(cosθ+isinθ)5 =5C0(cosθ)5+5C1(cosθ)4(isinθ)+5C2(cosθ)3(isinθ)2+5C3(cosθ)2(isinθ)3+5C4(cosθ)1(isinθ)4+5C5(cosθ)∘sinθ)5 ⇒sin5θ=5C1cos4θsinθ ⇒−5C3cos2θsin3θ+5C5sin5θ ⇒(sinθ)5sin5θ=sin4θ5cos4θ−sin2θ10cos2θ+1 =5cot4θ−10cot2θ+1=5[cot4θ−2cot2θ+1]−4 =5[cot2θ−1]2−4≥−4 ⇒ Least value is −4