Q.
If z is a complex number satisfying the equation (∣z−(1+i)∣)2=2 and ω=z2(z=0), then the locus of ω is
2803
198
NTA AbhyasNTA Abhyas 2020Complex Numbers and Quadratic Equations
Report Error
Solution:
We have, (∣z−(1+i)∣)2=2 ⇒(x−1)2+(y−1)2=2 (Putting z=x+iy ) ⇒x2+y2=2(x+y)……..(i)
Let, ω=h+ik=z2=x+iy2=x2+y22(x−iy), so h=x2+y22x,k=x2+y2−2y ⇒h−k=x2+y22(x+y)=1 (from equation (i) ) ∴ Locus of the point ω(h,k) will be x−y=1.