Given ∣z−2i∣≤2 .
To find : maximum value of ∣3+i(z−1)∣ ∴∣3+i(z−1)∣ =∣3+iz−i∣ =∣∣3−i+i(z−2i)+2i2∣∣ =∣1−i+i(z−2i)∣[∵i2=−1]
So, ∣3+i(z−1)∣≤∣1−i∣+∣i(z−2i)∣ (using triangle inequality) ⇒∣3+i(z−1)∣≤12+(−1)2+2 ⇒∣3+i(z−1)∣≤22
Thus, the maximum value of ∣3+i(z−1)∣ is 22 .