Q.
If ∣z∣=1,z=1, then value of arg(1−z1) cannot exceed
151
157
Complex Numbers and Quadratic Equations
Report Error
Solution:
As ∣z∣=1,z=1,z=cosθ+isinθ5−π<θ, ≤π,θ=0. Now ω=1−z1=1−cosθ−isinθ1 =(1−cosθ)2+sin2θ(1−cosθ)+isinθ=2(1−cosθ)(1−cosθ)+isinθ =21+2icot(2θ)=21+2itan(2π−2θ)
This shows that ω lies on the line x=1/2 and −π/2<arg(ω)<π/2,Arg(ω)=0,
The maximum value of Arg(ω) is never attained.