⇒z2z1=icot2α ⇒iz1=−cot2α⋅z2
But iz1=Kz2 ∴K=−cot2α ∴tan2α=−K1.
Now tanα=1−tan2α/22tanα/2 =1−K21−K2=K2−1−2K ∴α=tan−1(1−K22K) =2tan−1(K)
Now z1+z2z1−z2=cosα+isinα ⇒α is the angle between z1−z2 and z1+z2. ⇒α=2tan−1K is the angle between z1−z2 and z1+z2