712
157
Complex Numbers and Quadratic Equations
Report Error
Solution:
Let ∣z1∣=∣z2∣=r ⇒z1=r(cosθ+isinθ)
and z2=r(cos(2π−θ)+isin(2π−θ)) ⇒z1z2=r2i, which is purely imaginary z1+z2=r[(cosθ+sinθ)+i(cosθ+sinθ)] ⇒(z1+z2)2=2r2⋅(cosθ+sinθ)2⋅i
which is purely imaginary.
Also arg(z1−1)+arg(z2−1)=−2π.