Q.
If z1 and z2 both satisfy the relation z+zˉ=2∣z−1∣
and arg(z1−z2)=π/4, then Im(z1+z2) equals
1491
185
Complex Numbers and Quadratic Equations
Report Error
Solution:
Let z=a+ib ∴zˉ=a−ib ⇒a=2z+zˉ= Real part of z ⇒2a=2∣a−1+ib∣(∵z+zˉ=2∣z−1∣) ⇒2a=1+b2 ⇒2(a1−a2)=b12−b22 =(b1+b2)(b1−b2)...(i)
But arg(z1−z2)=π/4 ∴tan−1(a1−a2b1−b2)=π/4 ⇒b1−b2=a1−a2...(ii)
Using (ii) in (i) we get, b1+b2=2 ⇒Im(z1+z2)=2