Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If |z|=1 and |ω-1|=1 where z, ω ∈ C, then the largest set of values of |2 z-1|2+|2 ω-1|2 equals
Q. If
∣
z
∣
=
1
and
∣
ω
−
1∣
=
1
where
z
,
ω
∈
C
, then the largest set of values of
∣2
z
−
1
∣
2
+
∣2
ω
−
1
∣
2
equals
1560
127
Complex Numbers and Quadratic Equations
Report Error
A
[
1
,
9
]
18%
B
[
2
,
6
]
5%
C
[
2
,
12
]
9%
D
[
2
,
18
]
68%
Solution:
(
2
z
−
1
)
(
2
z
ˉ
−
1
)
+
(
2
ω
−
1
)
(
2
ω
ˉ
−
1
)
[
4∣
z
∣
2
−
2
(
z
+
z
ˉ
)
+
1
]
+
[
4∣
ω
∣
2
−
2
(
ω
+
ω
ˉ
)
+
1
]
E
=
6
−
4
Re
(
z
)
+
4
ω
ω
ˉ
−
4
Re
ω
Now
∣
ω
−
1
∣
2
=
1
⇒
(
ω
−
1
)
(
ω
ˉ
−
1
)
=
1
ω
ω
ˉ
−
(
ω
+
ω
ˉ
)
=
0
ω
ω
ˉ
=
ω
+
ω
ˉ
ω
ω
ˉ
=
2
Re
ω
Hence
E
=
6
−
4
Rez
+
4
Re
ω
[Using
ω
ω
ˉ
=
2
Re
ω
]
=
6
+
4
(
Re
ω
−
Re
z
)
=
6
+
4
(
x
2
−
x
1
)
E
m
a
x
=
6
+
4
(
2
+
1
)
=
18
E
m
i
n
=
6
+
4
(
0
−
1
)
=
2
⇒
say
[
2
,
18
]