Q.
If z1 and zˉ1 represent adjacent vertices of a regular polygon of n sides and if Re(z1)Im(z1)=2−1, then n is equal to
1723
236
Complex Numbers and Quadratic Equations
Report Error
Solution:
Since z1 and zˉ1 are the adjacent vertices of a regular polygon of n sides,
we have, ∠z10zˉ1=n2π
and, ∣z1∣=∣zˉ1∣
Thus, z1=zˉ1e2π′/n
Let z1=r(cosθ+isinθ)=reiθ ⇒zˉ1=re−iθ
Since z1=zˉ1e2π′/n ⇒reiθ=re−iθe2πi/n =re2πi/n−iθ ⇒θ=n2π−θ
or θ=nπ
Therefore, z1=r(cosθ+isinθ) =r[cosnπ+isinnπ]
Now, Re(z1)Im(z1)=2−1 ⇒rcos(nπ)rsin(nπ)=2−1 ⇒tannπ=2−1=tan8π ⇒n=8