Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y = y (x) is the solution of the differential equation (dy/dx) = ( tan x -y) sec2 x, x ∈ ( - (π/2) , (π/2) ), such that y(0) = 0, then y ( - (π/4) ) is equal to :
Q. If
y
=
y
(
x
)
is the solution of the differential equation
d
x
d
y
=
(
tan
x
−
y
)
sec
2
x
,
x
∈
(
−
2
π
,
2
π
)
, such that
y
(
0
)
=
0
, then
y
(
−
4
π
)
is equal to :
2874
234
JEE Main
JEE Main 2019
Differential Equations
Report Error
A
2
+
e
1
0%
B
2
1
−
e
33%
C
e
−
2
33%
D
2
1
+
e
33%
Solution:
d
x
d
y
=
(
tan
x
−
y
)
sec
2
x
Now, put
t
⇒
d
x
d
t
=
sec
2
x
So
d
t
d
y
+
y
=
t
On solving, we get
y
e
t
=
e
t
(
t
−
1
)
+
c
⇒
y
=
(
tan
x
−
1
)
+
c
e
−
t
a
n
x
⇒
y
(
0
)
=
0
⇒
c
=
1
⇒
y
=
tan
x
−
1
+
e
−
t
a
n
x
So
y
(
−
4
π
)
=
e
−
2