Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y(x)=(xxx), x > 0 then (d2 x/d y2)+20 at x=1 is equal to:
Q. If
y
(
x
)
=
(
x
x
x
)
,
x
>
0
then
d
y
2
d
2
x
+
20
at
x
=
1
is equal to:
1767
146
JEE Main
JEE Main 2022
Differential Equations
Report Error
Answer:
16
Solution:
y
=
(
x
)
=
(
x
x
)
x
ln
y
(
x
)
=
x
2
⋅
ln
x
y
(
x
)
1
⋅
y
′
(
x
)
=
x
x
2
+
2
x
⋅
ln
x
y
′
(
x
)
=
y
(
x
)
[
x
+
2
x
ln
x
]
y
(
1
)
=
1
;
y
′
(
1
)
=
1
y
′′
(
x
)
=
y
′
(
x
)
[
x
+
2
x
⋅
ln
(
x
)]
+
y
(
x
)
[
1
+
2
(
1
+
ln
x
)]
y
′′
(
1
)
=
1
[
1
+
0
]
+
1
(
1
+
2
)
=
4
d
x
2
d
2
y
=
−
(
d
x
d
y
)
3
⋅
d
y
2
d
2
x
⇒
4
=
−
d
y
2
d
2
x
d
y
d
2
x
=
−
4
−
4
+
20
=
16