Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y(x) is a solution of the differential equation (d y/d x)+3 y=2, then displaystyle lim x arrow ∞ y(x) is equal to -
Q. If
y
(
x
)
is a solution of the differential equation
d
x
d
y
+
3
y
=
2
, then
x
→
∞
lim
y
(
x
)
is equal to -
259
160
Differential Equations
Report Error
A
2/3
B
1
C
0
D
3/2
Solution:
d
x
d
y
+
3
y
=
2
⇒
∫
2
−
3
y
d
y
=
∫
d
x
⇒
3
−
ℓ
n
(
2
−
3
y
)
=
x
+
c
⇒
ln
(
2
−
3
y
)
=
−
3
x
−
c
⇒
2
−
3
y
=
e
−
3
x
⋅
e
−
c
⇒
y
=
3
2
−
e
−
3
x
⋅
e
−
c
x
→
∞
lim
y
=
x
→
∞
lim
3
2
−
e
−
3
x
⋅
e
−
c
=
3
2