Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y=x2 f(x), 8 f(x)+6 f((1/x))=x+5 and ((d y/d x))x=-1=(1/a), then find the value of a.
Q. If
y
=
x
2
f
(
x
)
,
8
f
(
x
)
+
6
f
(
x
1
)
=
x
+
5
and
(
d
x
d
y
)
x
=
−
1
=
a
1
, then find the value of
a
.
95
179
Limits and Derivatives
Report Error
Answer:
-14
Solution:
8
f
(
x
)
+
6
f
(
x
1
)
=
x
+
5
...(i)
Replacing
x
by
x
1
, we get
8
f
(
x
1
)
+
6
f
(
x
)
=
x
1
+
5
...(ii)
Solving (i.) and (ii), we get
f
(
x
)
=
14
1
(
4
x
−
x
3
+
5
)
y
=
x
2
f
(
x
)
=
x
2
[
14
1
(
4
x
−
x
3
+
5
)
]
⇒
y
=
14
1
(
4
x
3
−
3
x
+
5
x
2
)
⇒
d
x
d
y
=
14
1
(
12
x
2
−
3
+
10
x
)
⇒
(
d
x
d
y
)
x
=
−
1
=
14
1
(
12
−
3
−
10
)
=
14
−
1
⇒
a
=
−
14