Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y=(x2+4 x-6/x2+4 x+6), for all real x, then number of integers in the range of y, is
Q. If
y
=
x
2
+
4
x
+
6
x
2
+
4
x
−
6
, for all real
x
, then number of integers in the range of
y
, is
119
84
Complex Numbers and Quadratic Equations
Report Error
A
7
B
6
C
5
D
4
Solution:
y
=
x
2
+
4
x
+
6
x
2
+
4
x
−
6
⇒
y
x
2
+
4
y
x
+
6
y
=
x
2
+
4
x
−
6
⇒
(
y
−
1
)
x
2
+
4
(
y
−
1
)
x
+
6
(
y
+
1
)
=
0
∀
x
∈
R
,
D
≥
0
⇒
16
(
y
−
1
)
2
−
4
⋅
6
⋅
(
y
−
1
)
(
y
+
1
)
≥
0
⇒
2
(
y
2
−
2
y
+
1
)
−
3
(
y
2
−
1
)
≥
0
⇒
y
2
+
4
y
−
5
≤
0
⇒
(
y
+
5
)
(
y
−
1
)
≤
0
y
∈
[
−
5
,
1
]
But
y
=
1
(think)
∴
y
∈
[
−
5
,
1
)
number of integers
=
6
.