Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y = (x + √1 + x2 )n , then (1 +x2) (d2y/dx2) + x (dy/dx) is :
Q. If
y
=
(
x
+
1
+
x
2
)
n
, then
(
1
+
x
2
)
d
x
2
d
2
y
+
x
d
x
d
y
is :
2252
191
Limits and Derivatives
Report Error
A
n
2
y
45%
B
−
n
2
y
21%
C
-y
19%
D
2
n
2
y
15%
Solution:
y
=
(
x
+
1
+
x
2
)
∴
d
x
d
y
=
n
(
x
+
1
+
x
2
)
n
−
1
(
1
+
2
1
+
x
2
1
.2
x
)
=
n
(
x
+
1
+
x
2
)
n
−
1
(
1
+
1
+
x
2
x
)
=
1
+
x
2
n
(
x
+
1
+
x
2
)
n
−
1
(
x
+
1
+
x
2
)
=
1
+
x
2
n
(
x
+
1
+
x
2
)
n
=
1
+
x
2
n
y
∴
(
1
+
x
2
)
(
d
x
d
y
)
2
=
n
2
y
2
⇒
(
1
+
x
2
)
2
d
x
d
y
.
d
x
2
d
2
y
+
.2
y
(
d
x
d
y
)
2
=
n
2
.2
y
d
x
d
y
⇒
(
1
+
x
2
)
d
x
2
d
2
y
+
x
d
x
d
y
=
n
2
y