5898
215
AMUAMU 2016Continuity and Differentiability
Report Error
Solution:
We have, y=tan−1(1+x2−x) ⇒tany=1+x2−x...(i)
On differentiating both sides w.r.t. ′x′ we get sec2ydxdy=21(1+x2)21−1×2x−1 ⇒(1+tan2y)dxdy=21(1+x2)−1/2⋅2x−1 [∵sec2θ=1+tan2θ] ⇒[1+(1+x2−x)2]dxdy=1+x2x−1 ⇒[1+1+x2+x2−2x1+x2dxdy =(1+x2x−1+x2) ⇒[2+2x2−2x1+x2]dxdy=1+x2x−1+x2 ⇒2[1+x2−x1+x2]dxdy=1+x2x−1+x2 ⇒2[(1+x2)2−x1+x2]dxdy=1+x2x−1+x2 ⇒21+x2[1+x2−x]dxdy=−1+x2(1+x2−x) ⇒dxdy=1+x2⋅21+x2(1+x2−x)−(1+x2−x) =2(1+x2)−1