Given, y=tan−1(ax1+a2x2−1)
Put ax=tanθ ∴y=tan−1(tanθ1+tan2θ−1) =tan−1(tanθsecθ−1) =tan−1(sinθ1−cosθ) =tan−1(2sin2θcos2θ2sin22θ) =tan−1(tan2θ) =2θ=21tan−1ax ∴y=21tan−1ax
On differentiating w.r.t. x, we get y′=2(1+a2x2)1...(i)
Again, differentiating both side we get y′′=−21(1+a2x2)2(a22x) ⇒(1+a2x2)y′′=−1+a2x2a2x =−a2x(2y′)[∵ from Eq.(i)] ⇒(1+a2x2)y′′+2a2xy′=0