y=tan−1(secx−tanx) y=tan−1(cosx1−sinx) ⇒y=tan−1((cos22x−sin22x)(cos2x−sin2x)2) ⇒y=tan−1(cos2x+sin2xcos2x−sin2x) ⇒y=tan−1(1+tan2x1−tan2x) ⇒y=tan−1(tan(4π−2x)) ⇒y=4π−2x
Differentiating with respect to x, we get ⇒dxdy=2−1
Therefore, ∣∣2(dxdy)∣∣=1.