Given y=∣sinx∣∣x∣
In the neighbourhood of −6π,∣x∣ and ∣sinx∣ both are negative
i.e., y=(−sinx)−x
Taking log on both sides, we get logy=−xlog(−sinx) ⇒y1dxdy=(−x)−sinx1(−cosx)+log(−sinx)(−1) =−x⋅cotx−log(−sinx) =−[xcotx+log(−sinx)] ⇒dxdy=−y[xcotx+log(−sinx)] ∴(dxdy)x=−6π=(2)−6π6[6log2−3π]