Given, y=sin2(cot−11−x1+x)
Let x=cos2θ…(i) ∴y=sin2[cot−11−cos2θ1+cos2θ] [∵1+cos2θ=2cos2θ and 1−cos2θ=2sin2θ] =sin2[cot−12sin2θ2cos2θ] =sin2[cot−1(cotθ)] ⇒y=sin2θ
[Differentiating w.r.t. θ, we get ] ⇒dθdy=2sinθcosθ ⇒dθdy=sin2θ…(ii)
Differentiating Eq. (i) w.r.t. θ, we get dθdx=−2sin2θ…(iii) ∵dxdy=dx/dθdy/dθ=−2sin2θsin2θ
[by Eqs. (ii) and (iii)] ⇒dxdy=−21