Q.
If y=sec−11+x22x+sin−1x+1x−1 ,then dxdy is equal to :
2822
202
Continuity and Differentiability
Report Error
Solution:
Let y=sec−1(1+x22x)+sin−1(x+1x−1)
Put x=tanθ , we get 1+x22x=1+tan2θ2tanθ=sin2θ
Since, −1≤sinθ≤1 ∴−1≤1+x22x≤1 ⇒sec−1(1+x22x) is defined only at x=1,−1 ∴dxdy does not exist.