Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y = log ( log x) then the value of ey (dy/dx) is
Q. If
y
=
lo
g
(
lo
g
x
)
then the value of
e
y
d
x
d
y
is
5912
207
Continuity and Differentiability
Report Error
A
e
y
14%
B
x
1
47%
C
(
l
o
g
x
)
1
17%
D
(
x
l
o
g
x
)
1
23%
Solution:
Let
y
=
lo
g
(
lo
g
x
)
Diff both side w.r.t
′
x
′
, we get
d
x
d
y
=
l
o
g
x
1
d
x
d
(
lo
g
x
)
⇒
d
x
d
y
=
l
o
g
x
1
×
x
1
⇒
lo
g
x
.
d
x
d
y
=
x
1
⇒
e
y
d
x
d
y
=
x
1
(
∵
e
y
=
e
l
o
g
(
l
o
g
x
)
=
lo
g
x
)