Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y= log 2 log 2(x), then (dy/dx) is equal to
Q. If
y
=
lo
g
2
lo
g
2
(
x
)
,
then
d
x
d
y
is equal to
3369
193
KEAM
KEAM 2009
Continuity and Differentiability
Report Error
A
l
o
g
e
x
l
o
g
2
e
7%
B
x
l
o
g
x
2
l
o
g
2
e
21%
C
l
o
g
e
2
l
o
g
2
x
14%
D
l
o
g
2
x
l
o
g
2
e
12%
E
x
l
o
g
e
x
l
o
g
2
e
12%
Solution:
Given,
y
=
lo
g
2
lo
g
2
(
x
)
=
l
o
g
e
2
l
o
g
e
l
o
g
2
(
x
)
=
l
o
g
e
2
l
o
g
e
[
l
o
g
e
2
l
o
g
e
x
]
⇒
y
=
l
o
g
e
2
l
o
g
e
l
o
g
e
x
−
l
o
g
e
l
o
g
e
2
On differentiating w.r.t.
x
,
we get
d
x
d
y
=
l
o
g
e
2
1
[
x
l
o
g
e
x
1
−
0
]
=
x
l
o
g
e
x
l
o
g
2
e