Q.
If y is a function of x then dx2d2y+ydxdy=0. If x is a function of y then the equation becomes -
67
141
Continuity and Differentiability
Report Error
Solution:
dxdy=dydx1 ⇒dxd(dxdy)=dxd(dx/dy1)=dyd(dx/dy1)dxdy =−(dx/dy)21⋅dy2d2x⋅dxdy
Now put the value of dxdy&dx2d2y in dx2d2y+ydxdy=0
On solving we get dy2d2x−y(dydx)2=0