Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y =e loge[1+x+x2+.........], then (dy/dx)=
Q. If
y
=
e
l
o
g
e
[
1
+
x
+
x
2
+
.........
]
, then
d
x
d
y
=
2793
196
KCET
KCET 2012
Continuity and Differentiability
Report Error
A
(
1
+
x
)
2
1
21%
B
(
1
−
x
)
2
1
32%
C
(
1
+
x
)
2
−
1
21%
D
(
1
−
x
)
2
−
1
25%
Solution:
Given,
y
=
e
l
o
g
[
1
+
x
+
x
2
+
…
]
∵
(
1
−
x
)
−
1
=
1
+
x
+
x
2
+
x
3
+
…
∞
∴
y
=
e
l
o
g
(
1
−
x
)
−
1
⇒
y
=
(
1
−
x
)
−
1
On differentiating w.r.t. 'x', we get
d
x
d
y
=
(
−
1
)
(
1
−
x
)
−
2
=
(
1
−
x
)
2
−
1