Given, y=cos−1x ⇒y=(cos−1x)2
On differentiating both sides w.r.t. x, we get dxdy=2(cos−1x)×1−x2−1
Again, differentiating both sides w.r.t. x, we get dx2d2y=−2(1−x2)21−x2×1−x2−1−cos−1x×(21)(1−x2)1/2(−2x) =−2[(1−x2)−1+(1−x2)1/2xcos−1x] dx2d2y=[(1−x2)2−(1−x2)1/22xcos−1x] ⇒(1−x2)dx2d2y=2+xdxdy ⇒(1−x2)dx2d2y−xdxdy=2
But, it is given (1−x2)dx2d2y−xdxdy=c ∴c=2