We have, y=(x−1)(x−4)ax−b =x2−5x+4ax−b...(i) ⇒dxdy=(x2−5x+4)2(x2−5x+4)a−(ax−b)(2x−5)...(ii) ⇒(dxdy)P(2,−1)=(4−10+42)(4−10+4)a−(2a−b)(4−5) =−4b
Since P is a turning point of the curve (i). Therefore, ⇒(dxdy)P=0 ⇒−4b=0 ⇒b=0...(iii)
Since P(2,−1) lies on y=(x−1)(x−4)ax−b. Therefore, −1=(2−1)(2−4)2a−b ⇒−1=−22a−b ⇒2a−b−2...(iv)
From (iii) and (iv), we get a=1, b=0.