Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y'' - 3y' + 2y = 0 where y(0) = 1, y'(0) = 0, then the value of y at x = loge 2 is
Q. If
y
′′
−
3
y
′
+
2
y
=
0
where
y
(
0
)
=
1
,
y
′
(
0
)
=
0
, then the value of
y
at
x
=
l
o
g
e
2
is
3502
191
WBJEE
WBJEE 2010
Differential Equations
Report Error
A
1
B
-1
C
2
D
0
Solution:
d
x
2
d
2
y
−
3
d
x
d
y
+
2
y
=
0
The corresponding equation is
m
2
−
3
m
+
2
=
0
∴
General solution of given equation
y
=
A
e
x
+
B
e
2
x
y
′
=
A
e
x
+
2
B
e
2
x
At
x
=
0
,
y
=
1
⇒
A
+
B
=
1
and
x
=
0
,
y
′
=
0
⇒
A
+
2
B
=
0
Solving these equation
A
=
2
,
B
=
1
∴
y
=
2
e
x
−
e
2
x
At
x
=
lo
g
2
,
y
=
0