Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y=(2/√a2-b2) tan -1[√(a-b/a+b) tan (x/2)], then .(d2 y/d x2)|x=(π/2)=
Q. If
y
=
a
2
−
b
2
2
tan
−
1
[
a
+
b
a
−
b
tan
2
x
]
, then
d
x
2
d
2
y
∣
∣
x
=
2
π
=
1693
172
AP EAMCET
AP EAMCET 2018
Report Error
A
2
a
2
b
B
a
2
b
C
a
2
b
D
2
a
b
2
Solution:
We have,
y
=
a
2
−
b
2
2
tan
−
1
[
a
+
b
a
−
b
tan
2
x
]
⇒
d
x
d
y
=
[
a
2
−
b
2
2
⋅
1
+
(
a
+
b
a
−
b
)
t
a
n
2
2
x
1
⋅
a
+
b
a
−
b
⋅
sec
2
2
x
⋅
2
1
]
=
a
+
b
s
e
c
2
x
/2
(
a
+
b
)
+
(
a
−
b
)
t
a
n
2
x
/2
a
+
b
=
a
+
b
+
a
t
a
n
2
2
x
−
b
t
a
n
2
x
/2
s
e
c
2
x
/2
=
a
(
1
+
t
a
n
2
2
x
)
+
b
(
1
−
t
a
n
2
2
x
)
s
e
c
2
x
/2
=
(
1
+
t
a
n
2
2
x
)
s
e
c
2
x
/2
[
a
+
b
(
1
+
t
a
n
2
x
/2
1
−
t
a
n
2
x
/2
)
]
d
x
d
y
=
a
+
b
c
o
s
x
1
∴
d
x
2
d
2
y
=
(
a
+
b
c
o
s
x
)
2
−
1
⋅
(
−
b
sin
x
)
⇒
d
x
2
d
2
y
=
(
a
+
b
c
o
s
x
)
2
b
s
i
n
x
∴
d
x
2
d
2
y
∣
∣
x
=
2
π
=
(
a
+
b
c
o
s
2
π
)
2
b
s
i
n
π
/2
=
a
2
b