Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y1(x) is a solution of the differential equation (d y/d x)+f(x) y=0, then a solution of differential equation (d y/d x)+f(x) y=r(x) is
Q. If
y
1
(
x
)
is a solution of the differential equation
d
x
d
y
+
f
(
x
)
y
=
0
, then a solution of differential equation
d
x
d
y
+
f
(
x
)
y
=
r
(
x
)
is
563
162
Differential Equations
Report Error
A
y
(
x
)
1
∫
y
1
(
x
)
d
x
B
y
1
(
x
)
∫
y
1
(
x
)
r
(
x
)
d
x
C
∫
r
(
x
)
y
1
(
x
)
d
x
D
∫
(
r
(
x
)
)
2
y
1
(
x
)
d
x
Solution:
(1)
d
x
d
y
1
+
f
(
x
)
y
1
=
0
⇒
f
(
x
)
=
y
1
−
1
d
x
d
y
1
(2)
d
x
d
y
−
y
1
1
d
x
d
y
1
⋅
y
=
r
(
x
)
e
−
∫
y
1
1
d
x
d
1
d
x
=
e
−
∫
y
1
d
y
1
=
y
1
1
d
x
d
(
y
1
y
)
=
y
1
r
(
x
)
⇒
y
1
y
=
∫
y
1
r
(
x
)
d
x
+
c
y
=
y
1
∫
y
1
r
(
x
)
d
x
+
c
y
1