Q.
If y1/m+y−1/m=2x, then the value of (x2−1)y2+xy1, is
3742
214
Rajasthan PETRajasthan PET 2006
Report Error
Solution:
Given, y1/m+y−1/m=2x ⇒y1/m+y1/m1=2x ⇒(y1/m)2+1=2xy1/m ⇒(y1/m)2−2xy1/m+1=0, which is a quadratic equation.
So, y1/m=22x±4x2−4 ⇒y1/m=x±x2−1 ⇒y=[x±x2−1]m ...(i) ∴dxdy=y1 =m[x±x2−1]m−1 [1±2x2−11.2x] ⇒y1=m[x±x2−1]m−1[x2−1x2−1±x] ⇒y1=x2−1m[x±x2−1]m ⇒y1=x2−1my [from Eq.(i)] ⇒ x2−1.y1=my
On squaring both sides, we get (x2−1)y12=m2y2
On differentiating both sides, we get (x2−1)2y1y2+2xy12=2m2yy1 ⇒y1y2(x2−1)+xy12=m2yy1 ⇒(x2−1)y2+xy1=m2y